14 38-ACETOXY-20-HYDROXYLUPANE, C3Hs4O;

chemistry of the entire molecule is determined. This
absolute configuration is presented in Figs. 1 & 2.
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The Crystal Structure of Rubidium 7,7,8,8-Tetracyanoquinodimethane, Rb-TCNQ, at -160°C
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Crystals of Rb-TCNQ have monoclinic symmetry; the space group is P2,/c, a=7-187 (1), b=12-347 (2),
c=13-081 (3) A, f=98-88 (2)°, Z=4. Rb* and TCNQ- are both at general positions. The intensities
were collected at —160°C on an automatic Nonius diffractometer. Approximate values for the atomic
coordinates were obtained from Patterson and difference Fourier maps. Anisotropic least-squares
refinement decreased the residual R to 0-066 for 5512 independent reflexions. The bond lengths in the
TCNQ ™ ion show that the ion has quinoid character; the group is not planar but has the shape of a
shallow boat. The TCNQ~ radical-ions form charge-resonance bounded rows along the a axis. The
interaction between the rows is small. Within a row interplanar spacings of 3-159 and 3-484 A alternate.
The distance of 3:159 A is the shortest distance found so far between successive TCNQ planes. The
Rb* jons also form rows along the a axis with alternating distances of 3-483 and 3-726 A between the
ions. These distances are appreciably longer than twice the radius of Rb* (3:0 A). Rb* is octahedrally
surrounded by eight negatively charged TCNQ nitrogen atoms at distances of 2:982, 2996, 3-004, 3-009,

3-025, 3055, 3:057 and 3-108 A.

Introduction

Salts of the stable TCNQ ™ radical anion, derived from
7,7,8,8-tetracyanoquinodimethane (TCNQ), show
interesting electrical and magnetic properties.

N N
C C
AN 7
F _O— <
//C/ EN
N N
TCNQ

Some of these organic radical salts are among the

organic compounds with the highest electrical con-
ductivities known, approximately 100 ohm~*! cm~! at
room temperature, whereas for others the conductivity
is as small as 1072 ohm =% cm~! at room temperature
(Acker, Harder, Hertler, Mahler, Melby, Benson &
Mochel, 1960; Melby, Harder, Hertler, Mahler, Ben-
son & Mochel, 1962). Recent measurements of the
electrical conductivities and absolute magnetic suscep-
tibilities of the crystalline M'-TCNQ salts (M'=alkali
cation) have revealed that phase transitions occur in
all these salts except in Li-TCNQ (Vegter, Hibma &
Kommandeur, 1969). Table 1 shows that especially
for Rb-TCNQ the heat of transition is large. We
observed that crystals of this compound do not remain
single during the transition, indicating that the changes
in the structure are pronounced.
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Table 1. Transition points T and heats of transition AH
for the M'-TCNQ salts and for Wurster’s blue per-
chlorate (TMPD.CIO,)

T(°K) AH (cal/mole)
*Li-TCNQ no phase transition observed
Na-TCNQ 348 unobservable
K-TCNQ 395 60
Rb-TCNQ 381 1010
Cs-TCNQ 210 unobservable
1Cl104,~-TMPD 186 240

* Vegter, Hibma & Kommandeur (1969).
1 see also: Nordio, Soos & McConnell (1966).

The magnetic susceptibilities of the M'-TCNQ salts
are so small (molar paramagnetic susceptibilities of the
order 1075 emu at room temperature), that they cannot
be considered as approximately fully paramagnetic
radical salts. Neither are the susceptibility data con-
sistent with the usual relation

XpT=(8F*No/3k) [1+4 exp (2J/kT)]~*

for singlet ground-state dimers, each having a triplet
state lying at an energy 2J above this ground-state
(Vegter et al., 1969). Therefore attempts have been
made in the literature to find a theory to explain the
magnetic properties. The proposed theories assume
that the organic radicals are arranged in rows having
little mutual interaction as is the case in Cs,(TCNQ);
(Fritchie & Arthur, 1966), K-TCNQ (Anderson &
Fritchie, 1963) and in Wiirster’s blue perchlorate
TMPD.CIO, (de Boer & Vos, 1971).

Our X-ray work on the M'-TCNQ salts was initiated
by the fact that only little structural information was
available for these compounds. After some unsuccessful
attempts to determine the crystal structures of Li-
TCNQ and K-TCNQ, we were able to do a complete
three-dimencional X-ray diffraction study of Rb-
TCNQ at low temperature (—160°C).

b () .___ﬁ:‘_
I *
0] el + - Az —c (2)
1
| ——— b‘(l)
Al
b

<)

Fig. 1. Mutual orientation of the individuals in quadruplets of
K-TCNQ. The locations of 5* and ¢* on a non-zero layer
line about the a axis are given. 4, through A4 are the points
of intersection of the a* axes with the layer line.

Preliminary work on Li-TCNQ and K-TCNQ

Li-TCNQ

We started to investigate Li-TCNQ as this com-
pound has the advantage of having no transition
point, so that the y, curve of the same modification can
be studied over a large temperature range. No good
crystals have been obtained so far, however. According
to preliminary rotation and Weissenberg photographs
the compound is tetragonal, a=b=12:3, ¢=79 A,
Z=4. The odd layers about the c¢ axis are present as
diffuse lines on the rotation photographs.

K-TCNQ

According to Anderson & Fritchie (1963) the com-
pound is monoclinic, space group P2,/n, a=7-10
(1), b=17-80 (3), c=17-88 (3) A, =949 (3)°, Z=8
indicating that there are two independent TCNQ
units on general positions in the cell. We could verify
the conclusions concerning the lattice parameters and
space group, but found that the approximate tetragonal
geometry in the bc plane gives rise to twinning with the
formation of quadruplets around a. In Fig. 1 the
relationship between the four individuals is given. It
can be concluded that the approximate tetragonal sym-
metry observed by Anderson & Fritchie (AF) for the
reflexions Ok/ is partly due to the quadruplet formation.

The preliminary structure determination by AF
shows that both the K* ions and the TCNQ groups
are stacked in rows along the g axis. From the available
experimental crystallographic evidence it is not certain
whether or not there is a bimolecular association of
TCNQ groups in the rows, as has been suggested by
Vegter, Hibma & Kommandeur (1969).

Experimental work on Rb-TCNQ

Preparation and crystal data

Crystals of Rb—-TCNQ were prepared by a diffusion
process of Rbl and TCNQ in acetronitrile by Vegter,
Hibma & Kommandeur (1969), in the Laboratory for
Physical Chemistry at Groningen. Use was made of
the crystal growth apparatus described by Pott & Kom-
mandeur (1967). The two parts of the apparatus were
filled with a 0-09 M solution of Rbl in acetonitrile and
a 0-03 M solution of TCNQ in acetronitrile. Needles as
long as 0-5 cm along the a axis were obtained.

The cell dimensions were determined from zero
layer line Weissenberg photographs superimposed
with NaCl reflexion spots for calibration purposes.
Small crystals with dimensions of 0-1x0-1x0-1 mm
were used. During the exposure the crystals were
cooled by a stream of cold nitrogen gas, obtained by
evaporating liquid nitrogen. In this way a temperature
of —160°C was achieved (measured with a copper-
constantan thermocouple). The cell dimensions were
calculated by a least-squares program from the
sin? 6/22 values of 62 reflexions [A(Cu Ka,)=1-54434 A,
MCu Ka;)=1-54050 A, a(NaCl)=5-64006 A at 21°C].
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In Table 2 the values obtained are given with the
standard deviations as calculated by the least-squares
program. The symmetry relations between the reflex-
ions and the systematic absences observed on Weissen-
berg and precession photographs (#0/ absent for / odd,
0k0 absent for k odd) are characteristic for the well
known space group P2,/c (No. 14 in International
Tables for X-ray Crystallography, 1959). Preliminary
values for the cell dimensions at room temperature are
a=730(2), b=12:40 (4), c=13-13 (4) A, =988 (2)°.

Table 2. Crystal data of Rb-TCNQ at —160°C

Formula: Ci2N4HsRb;
F.W. 290

D:.=1-68 g.cm~3
Din=1-6 g.cm~3 (20°C)
Z=4

=455 cm-! (Mo Ka)
£=62-3 cm~1 (Cu Ka)

Monoclinic
a=7-187+0-001 A
b=12-347+0-002
¢=13-081+0-003
S=98-88 +0-02°
V=1147 A3

Space group P2i/c

Structure factors

A crystal with dimensions of 0-31x0:16 x0-16 mm
was used for the intensity measurements; it was
mounted on the tip of a glass fibre and aligned along
the monoclinic b axis. We collected the intensities on a
three-circle automatic Nonius diffractometer, using
the moving-counter moving-crystal method and Zr-
filtered Mo radiation (Furnas, 1957). The crystal was
again cooled down to —160°C by a cold stream of
nitrogen gas. A cooling system designed by van Bolhuis
(1971) was used.

All independent reflexions with k£ <4 were measured
up to §=42°; for k>4 only reflexions with 0 <8<37°
were considered. Deviations from linearity of the
(scintillation) counting equipment were kept below
1% by the use of attenuation filters; every two hours a
reference reflexion was measured accurately. Correc-
tions were made for intensity changes in the primary
beam, for the Lorentz and polarization effects and for
absorption. The latter corrections were calculated ac-
cording to the Busing & Levy (1957) scheme: 6 X 6 x 6
volume fragments and 6 accurately located bounding
planes were taken into account. Reflexions: with a
negative net intensity were given zero weight. For the
other reflexions the weight w, was calculated from the
relation w,=[o(F)]~?, o (F) being the standard devia-
tion in F due to counting statistics and errors in the
filter factors (only for reflexions measured with an
attenuation filter). For the structure determination
5512 reflexions with w,.>0 were available.

Determination of the structure

The peaks in the Patterson synthesis indicated the Rb*
ions lying approximately midway between two succes-
sive inversion centres in the x direction, for instance
approximately at (4,1,0), (},3,0), (1,0,%) and (3,0,%).
The vector model for this case is strongly similar to the

vector model obtained for a location of the Rb atoms
on inversion centres, for instance on (0,%,0), (3,3,0),
0,0,4) and (1,0,%). For the latter model some of the
peaks are expected to be higher and sharper than for
the former. From the heights and shapes of the peaks
it was decided to place the independent Rb atom at
(0-25, 0-52, 0-01). Its position was refined by isotropic
least-squares techniques. The reflexions with both A
and k+/ even, having a large contribution of the Rb
atoms, were used: R=29-8%. The positions of the
‘heavy’ atoms of the TCNQ group could be selected
from four images of the TCNQ group in a [F, — F(Rb)]
map of the reflexions with / and k +/ both even.

The least-squares refinement of the structure was
done on a TR-4 computer with a program working in
block-diagonal approximation (Cruickshank, 19615).
For the ‘heavy’ atoms (Rb*,C,N,) the scattering
factors of Doyle & Turner (1968) were used and for
hydrogen the f curve of Stewart, Davidson & Simp-
son (1965) was taken. After anisotropic refinement of
the ‘heavy’ atoms, a difference Fourier synthesis of
3000 reflexions with sin 6/2<0-68 A~ showed four
positive areas at the positions excepted for the four
hydrogen atoms. In addition to these maxima there
appeared to be diffraction ripples around the Rb atom.
In the last few cycles of the least-squares refinement
the hydrogen atoms were fixed at 108 A from the
respective carbon atoms. The valence angles were
obtained from geometrical considerations and their
temperature factors were assumed to be isotropic and
were refined by the least-squares program. In the final
stages of the refinement all 5512 reflexions were used
with w=[w 1+ p|F,|}]~*; the constant p=36x10"*
was chosen such as to make (w(F,— F.)*) as equal as
possible for different values of sin /4 and |F|. The
obtained values for (w(F,—F.)?) at the end of the
refinement are given in Table 3. The weighted residual
R=[3 w(F,— F.)*/> wF2"* was 6:57% for all reflex-
ions. In the last cycle the shifts in the atomic positions
were smaller than 0-1 o.

—_— A

C

Fig.2. Molecular axes. 4 and C lie in the least-squares plane
of the quinoid skeleton, B is perpendicular to this plane.
* s the projection along B of the point of intersection of the
libration axes. The direction cosines (in units 104) relative
to a*, b and ¢ are: 4030, — 6591 and 6350 for 4, 9074, 3794
and — 1804 for B and 1235, —~6515 and — 7486 for C.
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The final parameters are listed in Tables 4 and 5,
with (in parentheses) their standard deviations as cal-
culated by the least-squares program. The observed
and calculated intensities are compared in Table 6.

Table 3. {w(F,—F.)*) as a function_of F and sin_6/A

The average values are taken for the reflexions considered in
each group.
Nr.=number of reflexions in a group.

Nr.  (Fo) (W(Fo—Fo)?) Nr. ((sin 8/A)2) {w(F,— Fo)?)

454 39 0-2 32 0-0146 7-8
2316 11-0 08 142 0-0483 34
1399 21-8 0-6 191 0-0938 1-7

668 327 0-8 239 0-1407 1-0

286 44-4 1-0 273 0-1874 07

164 55-4 1-2 293 0-2333 0-8

75 667 1-9 325 0-2797 0-5
69 78-0 1-6 351 0-3272 05
31 88-8 2:6 374 0-3739 06
19 99-2 1-4 383 0-4205 05
5 111-4 2:1 388 0-4665 06
4 121-9 23 449 0-5123 06
9 1363 32 419 0-5590 0-6
5 145-3 2:6 464 0-6054 06
6 156-1 49 468 06530 0-6
0 404 0-6981 0-6
0 90 0-7444 0-8
0 81 0:7935 0-6
1 204-1 61 107 0-8390 0-8
1 2124 01 39 0-8744 0-9

Thermal motion

The anisotropic thermal parameters (Table 5) of the
16 heavy atoms of the TCNQ molecule were used in an
analysis of the rigid-body translational and librational
motion (Cruickshank, 1956, 1961a). The point of
intersection of the axes of libration was varied (Pawley,
1963). The results are listed in Table 7(a). From the
unrealistically low values of w,, and w;; it must be

concluded that not too much physical significance can
be attached to the values of T'and w and to the position
of the point of intersection of the libration axes. No
libration corrections have therefore been applied to
the bond lengths given in Fig. 8.

Table 4. Final atomic coordinates ( x 10°) and parameters
B for the hydrogen atoms
Standard deviations ( x 105) are in parentheses.

The positions of the hydrogen atoms were not refined. For
numbering of atoms, see Fig. 3.

x/a y/b z/c B(H)
Rb 24054 4) 51076 (2)  —356 (2)
N(1) 6351 (42) 7669 (25) —31757 (24)
CQ) 9150 (43) 10142 (26) —23211 (25)
Cc@3) 12569 (42) 12945 (24) —12526 (24)
C(4) 5798 (42) 23139 (25) —9822 (24)
N(5) 375 (42) 31447 (24) —7480 (25)
C(6) 20745 (39) 5429 (24) —4921 (24)
() 22672 (42) 7965 (24) 5826 (24)
C(8) 30444 (40) 636 24) 13162 (23)
C(9) 36758 (40) —9710 (24) 10267 (24)
C(10) 34708 (42) —12232(24) —439 (23)
C(11) 26899 (42) —4912 (26) —7775 (24)
N(12) 54551 (40) —36453 (23) 12813 (22)
C(13) 50235 (43) —27861 (25) 15044 (24)
C(14) 44799 (43) —17369 24) 17775 (23)
C(15) 46719 (42) —15192 (24) 28484 (24)
N(16) 48386 (42) —13428 (23) 37247 (22)
H(17) 18059 15683 8219 01 (6) A2
H(18) 31851 2776 21213 1-1 (8)
H(19) 39301 19961 —2841 21 (9)
H(20) 25498 —7042 — 15830 1-4 (8)

Although only qualitative aspects of the thermal mo-
tion can be discussed, it is noticeable that the longest
principle axis of libration nearly coincides with the mo-
lecular axis 4 (Fig. 2) for which the moment of inertia is
smallest. The translation appears to be smallest along

Table 5. Final thermal parameters

The temperature factor is of the form

exp [—272(U 1a*2h2 + Uzpb*2k2 + Ussc*2[2 42Uy ha*kb* + 2U23kb*Ic* 42U 3ha*c*)).
All values are multiplied by 104 and standard deviations are given in parentheses.

Un Uz Uss 20Uy, 2U2;3 2U13

Rb 122 (1) 144 (1) 134 (1) 6(2) —6(3) 72

N(1) 215 (13) 204 (14) 149 (13) 22 (22) —41 (22) —-12 (22)
C(2) 138 (12) 130 (13) 140 (14) 50 (20) 37 (22) —14 21)
CQ(3) 137 (12) 88 (12) 111 (13) 21 (19) —24 (20) —35 (20)
C4) 137 (12) 126 (13) 107 (13) —29 (20) 26 (21) —28 (20)
N(5) 204 (13) 164 (13) 210 (15) 19 (21) —61(23) —-5(22)
C(6) 104 (11) 99 (12) 105 (12) -9 (19) —42 (20) —-5(19)
C(D 160 (13) 92 (12) 104 (12) 5(20) —11 (20) 46 (20)
C(8) 147 (11) 100 (12) 101 (11) —12(20) —28 (20) 39 (18)
C) 111 (11) 106 (12) 101 (12) —-17 (19) —8(20) 21 (19)
C(10) 157 (12) 93 (12) 80 (12) 39 (19) —23(19) 18 (20)
c1un 136 (12) 130 (13) 91 (12) 16 (20) —17 (20) 17 (20)
N(12) 206 (13) 138 (12) 135 (12) 44 (20) —15(20) —11 (20)
C(13) 158 (13) 129 (13) 82 (12) —31(20) 16 (20) - 18 (20)
C(14) 171 (13) 97 (12) 80 (12) —1(20) —17 (20) 26 (20)
C(15) 158 (13) 88 (12) 97 (12) —8(19) 18 (20) 24 (20)
N(16) 259 (14) 148 (13) 111 (12) 31 (21) 19 (20) 34 (21)

AC28B-2
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Table 6. Comparison of observed and calculated intensities

The running index is 4; values of & and / for each group immediately precede that group.
The value for |Fo|? is given first, the second value is | Fe|2
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Table 6 (cont.)
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the B axis, which is reasonable in view of the packing compared in Table 7(b). We see that the thermal
of the molecules to be discussed in the next section. motion in Rb-TCNQ, studied at — 160°C, is relatively
The thermal motions of different TCNQ groups are  small. Our rather inaccurate thermal parameters do
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not reveal deviations from the rigid body behaviour
as observed in TMPD—TCNQ), and in tetraphenyl-
phosphonium-(TCNQ), at room temperature. In the
latter compounds, as well as in tetracyanoethylene,
the C=N groupsclearly suffer non-rigid thermal motion
(Hanson, 1968; Goldstein, Seff & Trueblood, 1968;
Bekoe & Trueblood 1960). For all TCNQ groups in
Table 7(b) the libration is largest around the axis with
the smallest moment of inertia.

Description of the structure
Packing

The structure in [100] and [010] projection is given
in Figs. 3 and 4. It is easily seen that both the TCNQ
groups and the Rb atoms are arranged in rows along
the a axis. Similar rows have not only been observed
in many other TCNQ salts and in TCNQ itself (Frit-
chie & Arthur, 1966; Fritchie, 1966; Williams & Wall-
work, 1968; Long, Sparks & Trueblood, 1965), but
also in organic radical salts with positive organic
groups, such as Wiirster’s blue perchlorate TMPD.CIO,
(de Boer & Vos, 1971). Wallwork (1961) noticed that
strong intermolecular interaction between two different
molecules, like TMPD and chloranil, also results in a
characteristic plane-to-plane packing; in this case the
components alternate.

In Rb-TCNQ the non-bonded distances between the
heavy atoms of successive TCNQ rows are all more than
0-24 A longer than the sum of the van der Waals radii,
indicating that there is little interaction between the
TCNQ rows. The same holds for the TMPD rows in
TMPD. CIO, and in TMPD. I (de Boer, Vos & Huml,
1968).

The surroundings of the Rb™* ions

The distances between the Rb* ions in the a direc-
tion are alternately 3-483 and 3-726 A, and thus
appreciably larger than twice the non-bonded radi-
us of Rb* (1-5 A; Pauling, 1960). Each Rb* ion is
surrounded by a distorted cube consisting of eight
slightly negatively charged (see Table 8) nitrogen atoms
at distances of 2-982, 2:996, 3-004, 3-009, 3-025, 3-055,
3-057 and 3-108 A from the positive ion. All these
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Fig.3. Projection of the Rb-TCNQ structure along the a axis
onto the plane (100). The centres of the molecules and the Rb
atoms lie approximately at heights 2 and 2, the terminal
nitrogen atoms are approximately at heights 0 and % (see
Fig. 4).

Fig.4. Projection of the Rb-TCNQ structure along the b axis.
Molecules with centres at height y~1 are given by thick
lines, those lying at y~1 are indicated by thin lines. The Rb
atoms coincide with the centres of the molecules in the pres-
ent projection and are not shown.
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distances are not much different from the sum of the
relevant van der Waals radii [((Rb*)=1-5,7(N)=1-5A;
Pauling, 1960].

Comparison of the surroundings of the positive ions
in Rb-TCNQ and in Cs,(TCNQ); shows that there are
noticeable differences. Fig. 3 illustrates that in
Rb-TCNQ four rows, each with two molecules, are
involved in the coordination of the Rb™* ion, so that
each nitrogen atom of the coordination cube belongs
to a different TCNQ molecule. According to the
preliminary model of Anderson & Fritchie (1963) the
same holds for K-TCNQ. In Cs,(TCNQ);, on the
other hand, only four TCNQ molecules are involved
in the cube surrounding the Cs* ion (Fritchie & Arthur,
1966); in this case the two cyano groups at the same

« =Rb, K
e =N

*aCs
e N

Fig.5 Surroundings of the metal cations in Rb-TCNQ and
K-TCNQ, and in Cs2(TCNQ)3.

end of a TCNQ molecule are coordinated to the same
Cs™ ion, as is seen from Fig. 5. Moreover Fig. 5 shows
that in Rb-TCNQ and in K-TCNQ the cubes share
sides, whereas in Cs,(TCNQ); successive cubes have
edges in common. No explanation has been given yet
for these differences.

The TCNQ rows

The arrangement of the TCNQ groups within a row
is schematically shown in Fig. 6; some interesting
distances have been added. The TCNQ units are
stacked in a plane-to-plane manner. A very interesting
feature of the row is that a very short interplanar
distance (distance between neighbouring ‘best benzene
planes’) of 3-159 A alternates with a larger distance of
3484 A. These interplanar distances may be compared
with distances in similar compounds. Both in TCNQ
itself (Long, Sparks & Trueblood, 1965) and in N-
methylphenazinium-TCNQ (Fritchie, 1966) the groups
in a row are equally spaced, with observed distances
of 3-45 A for TCNQ and of 3-26 A for the phenazinium
salt. A recent structure determination of triethylam-
monium-(TCNQ), has shown that the TCNQ row in
this compound contains the distance-sequence 3:-32,
3-30, 3-24 A (Kobayashi, Ohashi, Marumo & Saito,
1970).

The above values show that the distance of 3-159 A
in Rb-TCNQ is the shortest interplanar TCNQ dis-
tance observed so far, whereas it is also considerably
shorter than the distance of 3-4 A which is often found
between neighbouring aromatic rings. It must thus be
concluded that there is a strong interaction between
the groups 4; and B, in Fig. 6. A spectroscopical study
by Boyd & Phillips (1965) has shown that also in
solution strong interaction between TCNQ groups can
be present. The authors assume a dimerization of

Table 7. Thermal motion in a number of TCNQ groups
T” iS in 10_4 AZ’ Wiy in degz

(@) Rigid body motion of TCNQ in Rb-TCNQ at —160°C.

The direction cosines, cos A4, cos B and cos C (in units 10~4) of the principle axes of T and w refer to the molecular axes 4, B and
C respectively (Fig. 2). The point of intersection of the libration axes lies at A = —1-004, B= —0-058, C= —0-074 A

Value cos A cos B cos C Value cos A cos B cos C
T 128 —2467 —3575 9007 w11 87 9990 228 —366
T2z 112 —9510 — 896 —2961 w22 1-1 —-330 -~ 1422 —9893
T33 84 —1683 9351 2771 w33 0 —278 9896 —1413

(b) Comparison of the thermal motion in different TCNQ compounds

w'=w along 4, {w')=[w(B)+w(C)}/2, D={[Ui(obs)— Usy(rigid body)I2)1/2,
Average values of the standard deviations in Ui(obs) are given in parentheses.

Compound {Tw) " {wt) D

TPP~TCNQ), - - — 30 (9) Goldstein et al., (1968)
Anthracene~-TCNQ 610 34-8 7-7 40 () Williams & Wallwork (1968)
Cu-complex-TCNQ¥t 339 25-3 31 29 (33) Williams & Wallwork (1967)
TCNQ 392 29-7 34 21 (10) Long et al. (1965)
TMPD—(TCNQ), 314 315 4-7 31 (D Hanson, (1968)

Rb-TCNQ (—160°C) 108 8- 0 18 (12) Present study

* Tetraphenylphosphonium—(TCNQ);
1 Copper-(8-hydroxyquinolinato),-TCNQ
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TCNQ groups in water and report a change in free
energy (4F°) of —4-64 kcal per mole dimer.

It is noticeable that the groups A; and B, (or 4,
and B;) in the present compound do not coincide
looking along the normal to the ‘benzene’ planes.
Fig. 7 shows that there is a shift of 084 A of 4,
relative to B, such that the centre of 4; approximately
lies below the centre of the quinodimethane double
bond of B;. According to some authors (Fritchie, 1966)
the observed configuration is a stable one for a TCNQ
self-complex, but recent SCMO calculations performed
by Jonkman (1970) in Groningen have failed to confirm
this conclusion. From Figs. 6 and 7 is it seen that the
intermolecular distances between B, and A, are longer
than between B, and A, and that also the shift of the
groups relative to each other is larger, viz. 2:2 A. In
this case the shift is such that six atoms lie approxi-
mately on top of each other.

Shifts as reported for Rb-TCNQ have also been
observed in [(C¢HsCH,;),Cr]*(TCNQ)~ (Shibaeva,
Atovmyan & Rozenberg, 1969) and in Cs,(TCNQ),
(Fritchie & Arthur, 1966). In the former compound
all TCNQ groups in a row lie at approximately equal
interplanar distances; the shift is as observed for 4 ;and
By. In Cs,(TCNQ); the rows consist of TCNQ~(P)and
TCNQ°(Q) units in the sequence —~P-P-Q-P-P-Q etc.
The shift between two P units resembles that between
4, and B, in Rb-TCNQ, whereas the shift between P
and Q is similar to that between B, and 4,. It is note-
worthy that the interplanar distance between the two
P groups, 326 A, is larger than the corresponding
distance between 4; and B,, whereas the distance
between P and Q, 3-22 A, is shorter.

In many TCNQ compounds shifts are observed
which are different from those discussed above. Very
often a longitudinal slipping (displacement along the
axis 4 in Fig. 2) of one fourth the molecular length
is found. This is, for instance, the case in N-methyl-
phenazinium-TCNQ (Fritchie, 1966), TMPD-(TCNQ),
(Hanson, 1968) and in triethylammonium-(TCNQ),
(Kobayashi et al., 1970). According to Fritchie (1966)
it is not impossible that intercolumnar interaction
dictates the kind of shift in a compound, but no proof
is available yet for this assumption.

Individual TCNQ groups within a row

The molecular geometry is summarized in Fig. 8.
The standard deviations in the bond lengths and bond
angles were obtained from the standard deviations in
the coordinates calculated by the least-squares program
(Table 4). They amount to 0-004 A and 0-27° respec-
tively. Differences between chemically equivalent bonds
are not significant, which suggests that the standard
deviations calculated by the least-squares program are
realistic. The deviations from the best plane through
the quinodimethane group are given in the lower part
of Fig. 8; it is clearly seen that the molecule is not
planar. Both —-C(CN), groups lie entirely on the same
side of the quinoid skeleton of the TCNQ molecule, so

that the molecule has the shape of a shallow boat as
has been indicated in Fig. 6. The same effect has been
recognized in tetraphenylphosphonium-(TCNQ),
(Goldstein, Seff & Trueblood, 1968).

Results of theoretical SCMO-CI calculations by
Jonkman & Kommandeur (1971) are given in Table 8.
These calculations, as well as the earlier SCF-LCAO-
MO calculations by Lowitz (1967), show that the length
of the bond ¢ adjacent to the ‘benzene’ ring is especially
sensitive to the amount of charge on the molecule,

A, B 3.950 A,
N
3.159 \
v 3170 .
a.axis
\
\ \
\ \

—»

adn

1187
\ \

\

Fig.6. Row of TCNQ groups in Rb-TCNQ. Interesting dis-
tances have been added; the two numbers between the ni-
trogen atoms represent two independent distances present
between nitrogen atoms of adjacent molecules (see Fig. 7).
The individual TCNQ groups show slight deviations from
planarity (see Fig. 8).

/ '

Fig.7. TCNQ groups projected along the normal to the ben-
zene planes. For numbering of groups see Fig. 6.
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whereas the length of the CN bonds depends only
slightly on this charge. In Table 9 the bond lengths in
the TCNQ group of Rb-TCNQ are compared with
the observed bond lengths in eleven other TCNQ com-
pounds. It appears that the lengths of the bonds in
Rb-TCNQ agree reasonably well with the bond lengths
observed for the other TCNQ groups with an assumed
negative charge. Significant differences only occur
with bond a of compound IV and with the bonds @ and
¢ of VI. Moreover Tables 8 and 9 show that the
agreement with the observed values is generally better
than with the theoretical values for TCNQ~. This may

N(16) N{s)

1159 1155

Clis) 1786

yz )
1420 1217

115, ac(u c(a)na ]

c7 w1 o

)n:s

¥

< ngs Q@2

1420 .Jill

1208 1212
C(1) 9.5 c(m)

1148

0.000

0.002

Fig.8. Molecular geometry of TCNQ- in Rb-TCNQ at
—160°C. The bond lengths (A) and angles (°), given above,
have not been corrected for libration (see text). The devia-
tions (A) from the best plane through the quinodimethane
skeleton are given below. The equation of the plane referred
to the axes X, Y, Z parallel to a*,band c is:
0:9072X+0-3798Y —0-1808Z =1-7421.

WD-‘
400

201

100 ‘
X,.,.,olxm e.m.u.

— T°(K)

150 00 250 00 350 P 450 500

Fig.9. Temperature dependence of the molar paramagnetic
susceptibility y» of Rb-TCNQ as measured by Vegter &
Kommandeur (1971)

indicate that either the parameters used in the theoretic-
al work are not fit for bond length calculations (they
were chosen such as to get the best possible agreement
with the UV-VIS spectrum and with the spin densities
of the TCNQ~ ion) or that the bond lengths are in-
fluenced significantly by the relatively strong inter-
molecular interaction. Until more detailed studies have
been done, it cannot be decided whether or not the
bond lengths in the TCNQ groups of Rb~TCNQ show
significant differences from the bond lengths expected
for free TCNQ™.

Table 8. Calculated values for charges, bond orders
and bond lengths for free TCNQ, TCNQ™ and
TCNQ?" groups
To obtain the C-C bond lengths the relation R(C-C)=1:506—

0-17p was used (de Boer & Vos, 1971). For TCNQ- both the
charges and the spin densities are given.

e N
C’—"C(l) i C(4)
/ \\ ¢ /
\ C(2)=—=C(3)
/ \
N N
C=—=C C%\
N
Charge C(1) C(2) C(3) C@4) N
TCNQ 0-99 0-95 1-03 0-80 1-22
TCNQ! 1-04 095 1-28 0-74 1-36
Spin density 0-06 011 017 0-01 0-04
TCNQ—2 1-09 0-98 1-42 0-73 1-48
Bond order P a b c d e
TCNQ 0-92 0-29 0-85 0-25 0-94
TCNQ-! 0-83 043 0-65 0-34 0-89
TCNQ~2 073 0-57 042 0-47 0-81
Bond length R a b c d
TCNQ 1-:350 1-457 1-361 1-464
TCNQ-! 1-365 1-433 1-395 1-448
TCNQ—2 1-382 1-409 1-435 1-426

The spin densities and charges listed in Table 8
appear to offer a possible explanation for the shallow
boat shape of the TCNQ™ ions. In view of these results
one does expect that the quinoid groups of 4; and B
(Fig. 6) attract each other because of their relatively
high spin densities, whereas the C= N groups are pushed
apart because of their high electrical charges.

The magnetic susceptibilities of organic
radical comnounds

As mentioned in the introduction the theories proposed
so far to describe the magnetic behaviour of organic
radical compounds assume the organic radicals to be
arranged in rows. In these rows the distances between
the radicals can be either equal (regular rows) or
alternately different (irregular rows). The present
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structure determination shows that in Rb-TCNQ (see
Fig. 9) and other organic radical compounds at low
temperature, some type of spin-coupling between the
radicals has to be assumed. At the moment there are
two different views concerning this spin-coupling.
Fedders & Kommandeur (1970) neglect exchange inter-
action between the electrons and have developed a
narrow band model for the electronic energies on the
basis of a one-electron theory. Spin-coupling occurs
owing to the fact that many of the electrons have to be
placed in the same band(s). McConnell and coworkers
(Thomas, Keller & McConnell, 1963) state that ‘ex-
change interaction’ plays an essential part [according
to Soos & Hughes (1967) the exchange integral J is
phenomenologically defined and includes important
charge-transfer and phonon effects]. Their many-elec-
tron theory, which is based on the Hamiltonian for the
linear Heissenberg antiferromagnet, again gives a band
model, which in this case describes the different spin
states (Soos, 1965).

Although the dependence of the magnetic suscepti-
bility on the temperature is not the same for both
theories, it will be difficult to judge from y(T) curves
alone which theory is right for a particular compound
as both theories work with one (for regular rows) or
two (for irregular rows) parameters which can be

THE CRYSTAL STRUCTURE OF Rb-TCNQ AT -160°C

adjusted to the experimental y(7) values. Therefore in
addition to their magnetic behaviour, other physical
properties of the organic radical compounds have to
be studied, and the structures of a number of these
compounds have to be determined accurately. Further
work is in progress in the laboratories of Physical
Chemistry and Structural Chemistry in Groningen.
Vegter & Kommandeur (1971) have added another
adjustable parameter to the narrow band model by
extending this theory to cases where the distances be-
tween the organic radicals change with temperature.
Starting from our structural parameters this extended
theory has given a good description of the paramag-
netic behaviour of Rb-TCNQ. It seems not impossible,
however, to obtain equally good agreement between
theory and experiment with the Heissenberg antifer-
romagnet, if in this case also variations in the inter-
molecular distances with temperature are taken into
account.

The authors are very grateful to Professor J. Kom-
mandeur, Drs J. H. Vegter, Dr G. R. Anderson, Mr
H. Th. Jonkman and Dr J. L. de Boer for valuable
discussions and for their continued interest in this
research. Further we thank Mr F. van Bolhuis, Drs
J. H. Noordik and Mr C. Th. Kiers for assistance

Table 9. Observed bond lengths in twelve TCNQ compounds*

The numbering is given in Table 8. Average values for chemically equivalent bonds are listed with, in parentheses, the largest
deviation from this value. After the code number of each compound its standard deviation, referring to the individual bonds, is
given in parentheses.

1(4) 11(9)
a 1:436 (—) 1-355 (—)
b 1-448 (2) 1-460 (—)
TCNQO c 1-374 (—) 1:370 (—)
d 1-441 (1) 1425 (-)
e 1-140 (1) 1130 (—)
1V(4) V(13)
a 1:355 (2) 1:377 (2)
b 1-427 (4) 1:433 (35)
TCNQ-1 ¢ 1-410 (9) 1-409 (4)
d 1-419 (3) 1-408 (24)
e 1-152 (3) 1:159 (31)
I1X(4) X(4)
a 1-355 (1) 1-353 (3)
b 1-435 (2) 1:434 (3)
TCNQ-1/2 ¢ 1:395 (3) 1-396 (1)
d 1-427 (5) 1:430 (5)
e 1-171 (5) (1-17)

111(6) IV(4) V(13)
1-365 (—) 1-341 (=) 1-345 (8)
1-443 (5) 1-445 (5) 1-444 (14)
1377 (=) 1371 (=) 1-387 (5)
1-438 (1) 1-429 (2) 1-422 (34)
1-142 (1) 1-140 (11) 1-152 (35)

VI(6) VII(6) VIII(4)
1:341 (—) 1373 (-) 1373 (1)
1-434 (6) 1-414 (=) 1-423 (3)
1-388 (—) 1-406 (—) 1-420 (0)
1-420 (1) 14412 (-) 1-416 (8)
1-155 (1) 1-160 (—) 1-153 (7)

XI(13) XIIA(S) XIIB(5)
1-360 (14) 1:358 (6) 1-352 (2)
1-443 (14) 1-430 (6) 1-434 (7)
1-380 (3) 1-400 (1) 1-388 (5)
1-430 (10) 1-424 (2) 1-424 (9)
1-150 (11) 1-148 (7) 1-148 (8)

* I=TCNQ (Long & Sparks, 1965),
IT= Anthracene-TCNQ (Williams & Wallwork, 1968),
1l = Cu-complex-TCNQ (Williams & Wallwork, 1967),
IV =Cs2(TCNQ); (Fritchie & Arthur, 1966),
V=TEA(TCNQ), (Kobayashi et al., 1970),
VI = N-methylphenazinium TCNQ (Fritchie, 1966),
VII=TMPD-TCNQ (Hanson, 1956),
VIII=Rb-TCNQ (Present study),
IX=TMPD~TNCQ); (Hanson, 1968),
X=TPP-(TCNQ): (Goldstein, Seff & Trueblood, 1968).

XI=Quinolinium-(TCNQ),

XII= Methyltriphenylphosphonium-(TCNQ),
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during the experimental work. The calculations were
done at the Computing Centre of the University of
Groningen.
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Structure de 1’0-Cresol

PAr CLAUDETTE Bols
Université Paris VI, Laboratoire de Chimie Systématique, 8, rue Cuvier, Paris 5éme, France

(Regu le 1 février 1971)

Crystals of o-cresol are trigonal, with nine molecules in a unit cell of dimensions a=1643, c=5-94 A,
space group either P3; or P3, (enantiomorphic). The structure has been determined from three dimen-
sional single crystal X-ray data, registered at —50°C. The positions of molecules approximately
given by Patterson methods and steric considerations were refined by least-squares analysis. All hy-
drogen atoms were located in a difference map. Least-squares anisotropic refinement was carried out,
giving the final R value of 0-08. The molecules are linked by hydrogen bonds to form three chains

parallel to the ¢ direction.

Introduction

Notre travail s’intégre dans I’étude des xylénols et des
crésols entreprise au laboratoire. La structure cristal-

line des diméthyl-2,3, -2,5 et -2,6 phénols a été élucidée
(Gillier-Pandraud, 1965, 1966; Brusset, Gillier-Pan-
draud & Viossat, 1967), celle des diméthyl-3,5 et -3,4
phénols est actuellement en cours de détermination.



